Abstract
AbstractGiven a Banach operator ideal $\mathcal A$, we investigate the approximation property related to the ideal of $\mathcal A$-compact operators, $\mathcal K_{\mathcal A}$-AP. We prove that a Banach space X has the $\mathcal K_{\mathcal A}$-AP if and only if there exists a λ ≥ 1 such that for every Banach space Y and every R ∈ $\mathcal K_{\mathcal A}$(Y, X),
$$
\begin{equation}
R \in \overline {\{SR : S \in \mathcal F(X, X), \|SR\|_{\mathcal K_{\mathcal A}} \leq \lambda \|R\|_{\mathcal K_{\mathcal A}}\}}^{\tau_{c}}.
\end{equation}
$$
For a surjective, maximal and right-accessible Banach operator ideal $\mathcal A$, we prove that a Banach space X has the $\mathcal K_{(\mathcal A^{{\rm adj}})^{{\rm dual}}}$-AP if the dual space of X has the $\mathcal K_{\mathcal A}$-AP.
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献