Abstract
By an E-unitary inverse semigroup we mean an inverse semigroup in which the semilattice is a unitary subset. Such semigroups, elsewhere called ‘proper’ or ‘reduced’ inverse semigroups, have been the object of much recent study. Free inverse semigroups form a subclass of particular interest.An important structure theorem for E-unitary inverse semigroups has been obtained by McAlister [4, 5]. From a triple (G, ) consisting of a group G, a partially ordered set and a subset , satisfying certain conditions, he constructs an E-unitary inverse semigroup P(G, ). A semigroup of this type is called a P-semigroup. The structure theorem states that every E-unitary inverse semigroup is, to within isomorphism, of this form. A second theorem asserts that every inverse semigroup is isomorphic to a quotient of a Psemigroup by an idempotent-separating congruence. We refer below to these results as McAlister's Theorems A and B respectively. A triple (C, ) of the type used to construct a P-semigroup is here termed a “McAlister triple”. It is shown further, in [5], that there is essentially only one such triple corresponding to a given E-unitary inverse semigroup.
Publisher
Cambridge University Press (CUP)
Reference20 articles.
1. Free inverse semigroups
2. 16. Reilly N. R. , E-unitary inverse semigroups, Math. Dept. Research Report, Simon Fraser University (1975)
3. Free generators in free inverse semigroups
4. Free inverse semigroups
5. Reduced inverse semigroups
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献