Author:
Dreher B.,Michalski A.,Ho R. H. T.,Lee C. W. F.,Burke W.
Abstract
AbstractExtracellular recordings from single neurons have been made from presumed area 21a of the cerebral cortex of the cat, anesthetized with N2O/O2/sodium pentobarbitone mixture. Area 21a contains mainly a representation of a central horizontal strip of contralateral visual field about 5 deg above and below the horizontal meridian.Excitatory discharge fields of area 21a neurons were substantially (or slightly but significantly) larger than those of neurons at corresponding eccentricities in areas 17, 19, or 18, respectively. About 95% of area 21a neurons could be activated through either eye and the input from the ipsilateral eye was commonly dominant. Over 90% and less than 10% of neurons had, respectively, C-type and S-type receptive-field organization. Virtually all neurons were orientation-selective and the mean width at half-height of the orientation tuning curves at 52.9 deg was not significantly different from that of neurons in areas 17 and 18. About 30% of area 21a neurons had preferred orientations within 15 deg of the vertical.The mean direction-selectivity index (32.8%) of area 21a neurons was substantially lower than the indices for neurons in areas 17 or 18. Only a few neurons exhibited moderately strong end-zone inhibition. Area 21a neurons responded poorly to fast-moving stimuli and the mean preferred velocity at about 12.5 deg/s was not significantly different from that for area 17 neurons.Selective pressure block of Y fibers in contralateral optic nerve resulted in a small but significant reduction in the preferred velocities of neurons activated via the Y-blocked eye. By contrast, removal of the Y input did not produce significant changes in the spatial organization of receptive fields (S or C type), the size of the discharge fields, the width of orientation tuning curves, or direction-selectivity indices.Our results are consistent with the idea that area 21a receives its principal excitatory input from area 17 and is involved mainly in form rather than motion analysis.
Publisher
Cambridge University Press (CUP)
Subject
Sensory Systems,Physiology
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献