Neural interactions between cone photoreceptors and horizontal cells in the turtle (Mauremys caspica) retina

Author:

ASI HUSAM,PERLMAN IDO

Abstract

Horizontal cells and cone photoreceptors in the vertebrate retina are interconnected by a complex network of synapses leading to the generation of color-coded responses in chromaticity horizontal cells. A simple cascade model of excitatory feedforward and inhibitory feedback synapses had been suggested to underlie these observations. In this study, the photoresponses of cones and horizontal cells were recorded intracellularly from the turtle eyecup. Three different approaches were adopted in order to test quantitatively the cascade model. Comparing linearity functions between these neurons indicated multiple excitatory inputs to each type of horizontal cells. The depolarizing photoresponses of R/G C-type horizontal cells were considerably faster than those of L-type horizontal cells but slower than those recorded from L-cones. This observation disagrees with the basic assumption of the cascade model that assign the depolarizing photoresponses of R/G C-type horizontal cells to a negative feedback pathway from L-type horizontal cells onto M-cones. Finally, the action spectra of each of the three types of horizontal cells could not be solely accounted for by input from one spectral type of cones. Only by assuming excitatory and inhibitory inputs from all spectral types of cones, the action spectra of all types of horizontal cells could be reconstructed. These findings suggest that the negative feedback pathways from horizontal cells onto cones in the turtle retina cannot solely account for the chromatic properties of the horizontal cells and support a direct inhibitory inputs from cones to turtle horizontal cells.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3