Abstract
SynopsisWe investigate the integrable square properties of solutions of linear symmetric differential equations of arbitrarily large order 2m, whose coefficients involve a real multiple ɑr of certain positive real powers β of the independent variable x. Information on the L2 nature is obtained by variation of parameters from Meijer function solutions of an associated homogeneous equation of hypergeometric type. When the coefficients of the differential expressions are positive, it is possible, by a suitable choice of ɑr, β and m, to obtain between m and 2m —1 linearly independent solutions in L2(0, ∞). This proves a conjecture of J. B. McLeod that the deficiency index can take values between m and 2m —1 for such operators.
Publisher
Cambridge University Press (CUP)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献