Higher order Wirtinger inequalities

Author:

Kreith Kurt,Swanson Charles A.

Abstract

SynopsisWirtinger-type inequalities of order n are inequalities between quadratic forms involving derivatives of order kn of admissible functions in an interval (a, b). Several methods for establishing these inequalities are investigated, leading to improvements of classical results as well as systematic generation of new ones. A Wirtinger inequality for Hamiltonian systems is obtained in which standard regularity hypotheses are weakened and singular intervals are permitted, and this is employed to generalize standard inequalities for linear differential operators of even order. In particular second order inequalities of Beesack's type are developed, in which the admissible functions satisfy only the null boundary conditions at the endpoints of [a, b] and b does not exceed the first systems conjugate point (a) of a. Another approach is presented involving the standard minimization theory of quadratic forms and the theory of “natural boundary conditions”. Finally, inequalities of order n + k are described in terms of (n, n)-disconjugacy of associated 2nth order differential operators.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On quadratic integral inequalities of the second order;Journal of Mathematical Analysis and Applications;2008-06

2. A time scales version of a Wirtinger-type inequality and applications;Journal of Computational and Applied Mathematics;2002-04

3. Some second order integral inequalities;Nonlinear Analysis: Theory, Methods & Applications;2001-08

4. On the Discrete Riccati Equation and Its Applications to Discrete Hamiltonian Systems;Rocky Mountain Journal of Mathematics;1995-03-01

5. An Inequality Ascribed to Wirtinger and Related Results;Inequalities Involving Functions and Their Integrals and Derivatives;1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3