Design and Reliability Assessment of Novel 3D-IC Packaging

Author:

Su Y.-F.,Chiang K.-N.,Liang Steven Y.

Abstract

AbstractPresently, physical limitations are restricting the development of the microelectronic industry driven by Moore's law. To achieve high-performance, small form factor, and lightweight applications, new electronic packaging methods have exceeded Moore's law. This research proposes a double-chip stacking structure in an embedded fan-out wafer-level packaging with double-sided interconnections. The overall reliability of the solder joints and redistributed lines is assessed through finite element analysis. The application of soft lamination material and selection of a carrier material whose coefficient of thermal expansion (CTE) is close to that of the printed circuit board can effectively enhance the reliability of solder joints over more than 1,000 cycles. A trace/pad junction whose direction is parallel to the major direction of the CTE mismatch is recommended, and the curved portion of trace lines can absorb the expansion of metal lines and filler material. Design-on-simulation methodology is necessary to develop novel packaging structures in the electronic packaging industry.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3