A More Robust Compressible Lattice Boltzmann Model by using the Numerical Filters

Author:

Ghadyani M.,Esfahanian V.

Abstract

AbstractThe stability of the lattice Boltzmann model (LBM) is a challenging problem in the simulation of compressible flows with different types of embedded discontinuities. This study, proposes a complementary scheme for simulation of inviscid compressible flows by the lattice Boltzmann models using the numerical filters to improve the stability. The advantages and disadvantages of the implementation of numerical filters on the primitive and conservative variables, in addition to, mesoscopic and macroscopic variables are investigated. Moreover, a shock-detecting sensor, which activates a second-order linear filter near the discontinuities and a higher-order linear filter in smooth regions, is described and assessed. This study demonstrates that the proposed complementary scheme is practical. Also the accuracy and robustness of the utilized LB models are improved for inviscid compressible flows by implementation of the numerical filters on primitive variables. The validity of the procedure to capture shocks and to resolve contact discontinuity and rarefaction waves in well-known benchmarks is investigated and good agreements are obtained for all test cases.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A regularized lattice Boltzmann model with filter for multiphase flow with diffusion-dominated mass transfer considering two-film theory;Physics of Fluids;2023-11-01

2. Discrete Boltzmann modeling of detonation: Based on the Shakhov model;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-20

3. Numerical experiments on a hybrid WENO5 filter for shock‐capturing;Numerical Methods for Partial Differential Equations;2019-08-24

4. Lattice Boltzmann Simulations of Cavity Flows on Graphic Processing Unit with Memory Management;Journal of Mechanics;2017-09-04

5. Improvement of the instability of compressible lattice Boltzmann model by shock-detecting sensor;Journal of Mechanical Science and Technology;2015-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3