Material Shear Strength Assessment of AU/20SN Interconnection for High Temperature Applications

Author:

Liao L. L.,Chiang K. N.

Abstract

AbstractWhen a power module is under a continuous electrical load, a temperature effect is induced by the current load in the module configuration. The joint material therefore has long-term temperature and mechanical loadings under supplied power. A long-term temperature load can change the material and mechanical properties, including voiding, cracking, creeping and fracturing. Au/20Sn eutectic alloy, a highly temperature resistant material, is typically used for electric interconnections in high-power modules. The Au/20Sn is converted into AuSn and an Au5Sn intermetallic compound (IMC) by solid liquid inter-diffusion (SLID) bonding to form joints with high melting points. In this study, a test vehicle based on an actual power module was designed and fabricated to investigate and understand the material properties and mechanical behavior of Au/20Sn solder under a temperature load. The joint microstructure exhibited variation under different thermal treatment conditions such as temperature and load durations. The shear strength test was conducted to examine the mechanical strength of the joints under different thermal load conditions. The failure mode of the joint was further determined using fracture morphology after the shear test. Finally, the shear strength of Au/20Sn was identified to investigate the high temperature resistance of joints under different temperatures. The mechanical strengths of joints under different temperature loads are expressions of different mechanical characteristics and can be used to determine reliability at an intended high application temperature.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3