Mind the gap – safely incorporating deep learning models into the actuarial toolkit

Author:

Richman Ronald

Abstract

Abstract Deep neural network models have substantial advantages over traditional and machine learning methods that make this class of models particularly promising for adoption by actuaries. Nonetheless, several important aspects of these models have not yet been studied in detail in the actuarial literature: the effect of hyperparameter choice on the accuracy and stability of network predictions, methods for producing uncertainty estimates and the design of deep learning models for explainability. To allow actuaries to incorporate deep learning safely into their toolkits, we review these areas in the context of a deep neural network for forecasting mortality rates.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Reference80 articles.

1. Gesmann, M. , Murphy, D. , Zhang, W. , Carrato, A. , Crupi, G. & Wüthrich, M. V. (2020). Statistical Methods and Models for Claims Reserving in General Insurance [R package ChainLadder version 0.2.11] . Comprehensive R Archive Network (CRAN).

2. Nonparametric quantile estimation;Takeuchi;Journal of Machine Learning Research,2006

3. Machine learning techniques for mortality modeling

4. Dropout: A simple way to prevent neural networks from overfitting;Srivastava;Journal of Machine Learning Research,2014

5. Back-testing the chain-ladder method

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blended insurance scheme: A synergistic conventional-index insurance mixture;Insurance: Mathematics and Economics;2024-11

2. Mortality improvement neural-network models with autoregressive effects;The Geneva Papers on Risk and Insurance - Issues and Practice;2024-04

3. Machine learning in long-term mortality forecasting;The Geneva Papers on Risk and Insurance - Issues and Practice;2024-04

4. Accurate and explainable mortality forecasting with the LocalGLMnet;Scandinavian Actuarial Journal;2024-02-05

5. Blended Insurance Scheme: A Synergistic Conventional-Index Insurance Mixture;SSRN Electronic Journal;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3