Gain enhancement of UWB antenna using partially reflective surface

Author:

Prajapati Pravin R.,Khant Shailesh B.

Abstract

AbstractThis paper proposes, a high gain, Fabry Perot cavity antenna with coplanar waveguide (CPW) fed ultra wide band (UWB) radiating element. The proposed antenna has flat edge arrow shape-based radiating element, which act as a main radiating element and responsible for UWB radiation. This UWB microstrip antenna is parasitically coupled with an array of square parasitic patches (PPs), which act as partially reflective surface. The square patches are fabricated at the bottom of inexpensive FR4 substrate and suspended in the air with the help of dielectric rods at 1.5λ0 height. High gain is obtained by resonating PPs at near close frequencies of 3.8–8.8 GHz UWB, where partially reflective surface gives almost positive reflection phase gradients. Two laboratory prototypes of antenna, one with and another without partially reflective surface are fabricated and tested. Details of the proposed antenna design and role of partially reflective surface in gain enhancement of planar CPW fed UWB antenna are described, and typical experimental results are presented and discussed.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bandwidth Enhancement of Slot Antenna Using Fractal Shaped Isosceles for UWB Applications;The Applied Computational Electromagnetics Society Journal (ACES);2023-02-10

2. Compact Cauliflower-Shaped Antenna for Ultra-Wideband Applications;The Applied Computational Electromagnetics Society Journal (ACES);2022-05-04

3. A compact ultra-wideband square and circular slot ground plane planar antenna with a modified circular patch;International Journal of Microwave and Wireless Technologies;2021-08-25

4. Development of Multilayer Partially Reflective Surfaces for Highly Directive Cavity Antennas: A Study;Wireless Communications and Mobile Computing;2020-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3