Evolution of the magnetic field and flows of solar active regions with persistent magnetic bipoles before emergence

Author:

Alley C.S.,Schunker H.ORCID

Abstract

Abstract Magnetic active regions on the Sun are harbingers of space weather. Understanding the physics of how they form and evolve will improve space weather forecasting. Our aim is to characterise the surface magnetic field and flows for a sample of active regions with persistent magnetic bipoles prior to emergence. We identified 42 emerging active regions (EARs), in the Solar Dynamics Observatory Helioseismic Emerging Active Region survey (Schunker et al. 2016, A&A. 595, A107), associated with small magnetic bipoles at least one day before the time of emergence. We then identified a contrasting sample of 42 EARs that emerge more abruptly without bipoles before emergence. We computed the supergranulation-scale surface flows using helioseismic holography. We averaged the flow maps and magnetic field maps over all active regions in each sample at each time interval from 2 d before emergence to 1 d after. We found that EARs associated with a persistent pre-emergence bipole evolve to be, on average, lower flux active regions than EARs that emerge more abruptly. Further, we found that the EARs that emerge more abruptly do so with a diverging flow of $(3\pm 0.6) \times 10^{-6}$ s $^{-1}$ on the order of 50–100 ms $^{-1}$ . Our results show that there is a statistical dependence of the surface flow signature throughout the emergence process on the maximum magnetic flux of the active region.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A flux-independent increase in outflows prior to the emergence of active regions on the Sun;Monthly Notices of the Royal Astronomical Society;2024-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3