Probing the consistency of cosmological contours for supernova cosmology

Author:

Armstrong P.ORCID,Qu H.ORCID,Brout D.ORCID,Davis T. M.ORCID,Kessler R.ORCID,Kim A. G.ORCID,Lidman C.ORCID,Sako M.ORCID,Tucker B. E.ORCID

Abstract

Abstract As the scale of cosmological surveys increases, so does the complexity in the analyses. This complexity can often make it difficult to derive the underlying principles, necessitating statistically rigorous testing to ensure the results of an analysis are consistent and reasonable. This is particularly important in multi-probe cosmological analyses like those used in the Dark Energy Survey (DES) and the upcoming Legacy Survey of Space and Time, where accurate uncertainties are vital. In this paper, we present a statistically rigorous method to test the consistency of contours produced in these analyses and apply this method to the Pippin cosmological pipeline used for type Ia supernova cosmology with the DES. We make use of the Neyman construction, a frequentist methodology that leverages extensive simulations to calculate confidence intervals, to perform this consistency check. A true Neyman construction is too computationally expensive for supernova cosmology, so we develop a method for approximating a Neyman construction with far fewer simulations. We find that for a simulated dataset, the 68% contour reported by the Pippin pipeline and the 68% confidence region produced by our approximate Neyman construction differ by less than a percent near the input cosmology; however, they show more significant differences far from the input cosmology, with a maximal difference of 0.05 in $\Omega_{M}$ and 0.07 in w. This divergence is most impactful for analyses of cosmological tensions, but its impact is mitigated when combining supernovae with other cross-cutting cosmological probes, such as the cosmic microwave background.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference41 articles.

1. Vincenzi, M. , et al. 2023, MNRAS, 518, 1106

2. Virtanen, P. , et al. 2020, NM, 17, 261

3. Mitra, A. , Kessler, R. , More, S. , Hlozek, R. , & The LSST Dark Energy Science Collaboration. 2022, arXiv e-prints, arXiv:2210.07560

4. Lasker, J. , et al. 2019, MNRAS, 485, 5329

5. The Year in Industry at work

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3