Shore protection by oblique seabed bars

Author:

Couston Louis-AlexandreORCID,Jalali Mir Abbas,Alam Mohammad-RezaORCID

Abstract

Shore protection by small seabed bars was once considered possible because seafloor undulations strongly reflect surface waves of twice the wavelength by the so-called Bragg resonance mechanism. The idea, however, proved ‘unreliable’ when it was realized that a patch of longshore seabed bars adjacent to a reflective shore could result in larger waves at the shoreline than for the case of a flat seabed. Here we propose to revamp the Bragg resonance mechanism as a means of coastal protection by considering oblique seabed bars that divert, rather than reflect, shore-normal incident waves to the shore-parallel direction. We show, via multiple-scale analysis supported by direct numerical simulations, that the creation of a large protected wake near the shoreline requires a bi-chromatic patch to deflect the incident waves to the shore-parallel direction. With two superposed sets of oblique seabed bars, the incident wave energy becomes efficiently deflected far to the sides, leaving a wake of decreased wave activity downstream of the patch. We demonstrate that the shore protection efficiency provided by this novel arrangement is not affected by reflection of leaked waves at the shoreline, and that it is relatively robust against small frequency detuning.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3