Drop impact on small surfaces: thickness and velocity profiles of the expanding sheet in the air

Author:

Wang Y.,Bourouiba L.

Abstract

We consider the radially expanding sheet formed upon impact of a drop on a surface of comparable size to that of the drop. A unified self-similar solution for the unsteady radial thickness profile of the expanding sheet is derived from first principles in the inviscid limit. This unified functional form reconciles two conflicting theoretical profiles of sheet thickness proposed in the literature and allows for the collapse on a single curve direct measurements of sheet thickness profiles reported in the literature and the detailed measurements conducted herein. We show good agreement between our proposed unified thickness profile and data from our experiments for a range of surface-to-drop size ratios. We show that there is an optimal range of surface-to-drop size ratio for which the hypothesis of inviscid thin sheet expansion in the air holds. Outside of this optimal range, either insufficient vertical momentum is transferred to horizontal momentum to form an expanding sheet or viscous effects become too important to neglect. In this latter regime, the dominant effect of surface friction is to modify the velocity profile. We elucidate this effect using a Blasius-type boundary layer model. Finally, we relate the geometry of the drop in its early phase of impact to the sheet thickness profile in the air. We show that the coefficients of the proposed unified similarity thickness profile can directly be linked to volume flux conservation at early times, and to the maximum sheet thickness at the edge of the surface. Our results thus quantitatively link the fluid history on the surface to the thickness and velocity profiles of the freely expanding sheet in the air.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3