Abstract
Using variational calculus, we investigate the time-dependent injection rate that minimises the growth of the Saffman–Taylor instability when a finite volume of fluid is injected in a finite time, $t_{f}$, into a Hele-Shaw cell. We first consider a planar interface, and show that, with a constant viscosity ratio, the constant injection rate is optimal. When the viscosity of the displacing fluid, $\unicode[STIX]{x1D707}_{1}(t)$, gradually increases over time, as may occur with a slowly gelling polymer solution, the optimal injection rate, $U^{\ast }(t)$, involves a gradual increase in the flow rate with time. This leads to a smaller initial value of flow rate than the constant injection rate, finishing with a larger value. Such optimisation can lead to a substantial suppression of the instability as compared to the constant injection case if the characteristic gelling time is comparable to $t_{f}$. In contrast, for either relatively slow or fast gelling, there is much less benefit in selecting the optimal injection rate, $U^{\ast }(t)$, as compared to the constant injection rate. In the case of a constant injection rate from a point source, $Q$, then with a constant viscosity ratio the fastest-growing perturbation on the radially spreading front involves axisymmetric modes whose wavenumber increases with time. Approximating the discrete azimuthal modes by a continuous distribution, we find the injection rate that minimises growth, $Q^{\ast }(t)$. We find that there is a critical time for injection, $t_{f}^{\dagger }$, such that if $t_{f}>t_{f}^{\dagger }$ then $Q^{\ast }(t)$ can be chosen so that the interface is always stable. This critical time emerges from the case with an injection rate given by $Q^{\ast }\sim t^{-1/3}$. As the total injection time is reduced to values $t_{f}<t_{f}^{\dagger }$, the system becomes progressively more unstable, and the optimal injection rate for an idealised continuous distribution of azimuthal modes asymptotes to a flow rate that increases linearly with time. As for the one-dimensional case, if the viscosity of the injection fluid gradually increases over time, then the optimal injection rate has a smaller initial value but gradually increases to larger values than for the analogous constant viscosity problem. If the displacing fluid features shear-thinning rheology, then the optimal injection rate involves a smaller flow rate at early times, although not as large a reduction as in the Newtonian case, and a larger flow rate at late times, although not as large an increase as in the Newtonian case.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference34 articles.
1. Control of the permeability of a porous media using a thermally sensitive polymer
2. Fractal dimension and unscreened angles measured for radial viscous fingering;Praud;Phys. Rev. E,2005
3. Control of radial fingering patterns: a weakly nonlinear approach;Dias;Phys. Rev. E,2010
4. Radial fingering in a Hele Shaw cell
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献