Euler and Navier–Stokes equations in a new time-dependent helically symmetric system: derivation of the fundamental system and new conservation laws

Author:

Dierkes DominikORCID,Oberlack Martin

Abstract

The present contribution is a significant extension of the work by Kelbin et al. (J. Fluid Mech., vol. 721, 2013, pp. 340–366) as a new time-dependent helical coordinate system has been introduced. For this, Lie symmetry methods have been employed such that the spatial dependence of the originally three independent variables is reduced by one and the remaining variables are: the cylindrical radius $r$ and the time-dependent helical variable $\unicode[STIX]{x1D709}=(z/\unicode[STIX]{x1D6FC}(t))+b\unicode[STIX]{x1D711}$, $b=\text{const.}$ and time $t$. The variables $z$ and $\unicode[STIX]{x1D711}$ are the usual cylindrical coordinates and $\unicode[STIX]{x1D6FC}(t)$ is an arbitrary function of time $t$. Assuming $\unicode[STIX]{x1D6FC}=\text{const.}$, we retain the classical helically symmetric case. Using this, and imposing helical invariance onto the equation of motion, leads to a helically symmetric system of Euler and Navier–Stokes equations with a time-dependent pitch $\unicode[STIX]{x1D6FC}(t)$, which may be varied arbitrarily and which is explicitly contained in all of the latter equations. This has been conducted both for primitive variables as well as for the vorticity formulation. Hence a significantly extended set of helically invariant flows may be considered, which may be altered by an external time-dependent strain along the axis of the helix. Finally, we sought new conservation laws which can be found from the helically invariant Euler and Navier–Stokes equations derived herein. Most of these new conservation laws are considerable extensions of existing conservation laws for helical flows at a constant pitch. Interestingly enough, certain classical conservation laws do not admit extensions in the new time-dependent coordinate system.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3