Collaborative ontology engineering: a survey

Author:

Simperl Elena,Luczak-Rösch Markus

Abstract

AbstractBuilding ontologies in a collaborative and increasingly community-driven fashion has become a central paradigm of modern ontology engineering. This understanding of ontologies and ontology engineering processes is the result of intensive theoretical and empirical research within the Semantic Web community, supported by technology developments such as Web 2.0. Over 6 years after the publication of the first methodology for collaborative ontology engineering, it is generally acknowledged that, in order to be useful, but also economically feasible, ontologies should be developed and maintained in a community-driven manner, with the help of fully-fledged environments providing dedicated support for collaboration and user participation. Wikis, and similar communication and collaboration platforms enabling ontology stakeholders to exchange ideas and discuss modeling decisions are probably the most important technological components of such environments. In addition, process-driven methodologies assist the ontology engineering team throughout the ontology life cycle, and provide empirically grounded best practices and guidelines for optimizing ontology development results in real-world projects. The goal of this article is to analyze the state of the art in the field of collaborative ontology engineering. We will survey several of the most outstanding methodologies, methods and techniques that have emerged in the last years, and present the most popular development environments, which can be utilized to carry out, or facilitate specific activities within the methodologies. A discussion of the open issues identified concludes the survey and provides a roadmap for future research and development in this lively and promising field.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference51 articles.

1. Uschold M. , King M. 1995. Towards a methodology for building ontologies.

2. Human-centered ontology engineering: The HCOME methodology

3. Kotis K. 2008. On supporting hcome-3o ontology argumentation using semantic wiki technology. In OTM '08: Proceedings of the OTM Confederated International Workshops and Posters on On the Move to Meaningful Internet Systems, 193–199, Madeira, Portugal.

4. OPJK and DILIGENT: ontology modeling in a distributed environment

5. Auer S. , Pieterse B. 2005. “Vernetzte Kirche”: Building a Semantic Web. In Proceedings of the 1st International ISWC Workshop on Semantic Web Case Studies and Best Practices for eBusiness SWCASE 2005, Dublin.

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3