Adaptable and stable decentralized task allocation for hierarchical domains

Author:

Kazakova Vera A.ORCID,Sukthankar Gita R.

Abstract

Abstract Many real-world domains can benefit from adaptable decentralized task allocation through emergent specialization, especially in large teams of non-communicating agents. We begin with an existing bio-inspired response threshold reinforcement approach for decentralized task allocation and extend it to handle hierarchical task domains. We test the extension on self-deployment of a large team of non-communicating agents to patrolling a hierarchically defined set of areas. Results show near-ideal performance across all areas, while minimizing wasteful task switching through the development of specializations and subsequent respecializations when area demands change. A genetic algorithm is then used to evolve even more adaptable and stable task allocation behavior, by incorporating weight and power coefficients into agents’ response threshold reinforcement action probability calculations.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference47 articles.

1. Zheng, X. & Koenig, S. 2011. Generalized reaction functions for solving complex-task allocation problems. IJCAI Proceedings-International Joint Conference on Artificial Intelligence, 22, 478.

2. Kazakova, V. A. & Wu, A. S. 2018. Specialization vs. re-specialization: Effects of hebbian learning in a dynamic environment. In Florida Artificial Intelligence Research Society Conference FLAIRS-31.

3. Berman, S. , Halasz, A. , Kumar, V. & Pratt, S. 2007. Bio-inspired group behaviors for the deployment of a swarm of robots to multiple destinations. In Proceedings 2007 IEEE International Conference on Robotics and Automation, 2318–2323.

4. Dynamic redistribution of a swarm of robots among multiple sites

5. Nouyan, S. , Ghizzioli, R. , Birattari, M. & Dorigo, M. 2005. An insect-based algorithm for the dynamic task allocation problem. KI 19(4), 25–31.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on adaptive and learning agents 2019;The Knowledge Engineering Review;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3