Effects of flame-flame interaction on emission characteristics in gas turbine combustors

Author:

Kwak S.ORCID,Choi J.,Ahn M.,Lee M. C.,Yoon Y.ORCID

Abstract

AbstractIn real gas turbines, multiple nozzles are used instead of a single-nozzle; therefore, interactions between flames are inevitable. In this study, the effects of flame-flame interaction on the emission characteristics and lean blowout limit were analysed in a CH4-fueled single- and dual-nozzle combustor. OH* chemiluminescence imaging showed that a flame-interacting region, where the two flames from the nozzles were merged, was present in the dual-nozzle combustor, unlike the single-nozzle combustor. Flow-field measurements using particle image velocimetry confirmed that a faster velocity region was formed at the flame merging region, thereby hindering flame stabilisation. In addition, we compared the emission indices of NOx and CO between the two combustors. The emission indices of CO were not significantly different; however, a distinct effect of flame-flame interaction was indicated in NOx. To understand the effect of flame-flame interaction on NOx emissions, we measured temperature distribution using a multi-point thermocouple. Results showed that a wider high-temperature region was formed in the dual-nozzle combustor compared to the single-nozzle combustor; this was attributable to the high OH* chemiluminescence intensity in the flame-interacting region. Furthermore, it was confirmed that the size of this interacting region caused the deformation of the temperature distribution in the combustor, which can induce a difference in the increase ratio of NOx emission between high and low equivalence ratio ranges. In conclusion, we confirmed that flame-flame interaction significantly affected temperature distribution in the downstream of the flame, and the change in temperature distribution contributed primarily to the varying concentration of the emission gas.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3