A quantitative version of James's Compactness Theorem

Author:

Cascales Bernardo,Kalenda Ondřej F. K.,Spurný Jiří

Abstract

AbstractWe introduce two measures of weak non-compactness JaE and Ja that quantify, via distances, the idea of boundary that lies behind James's Compactness Theorem. These measures tell us, for a bounded subset C of a Banach space E and for given x*E*, how far from E or C one needs to go to find x**$\overline{C}^{w^*}$E** with x**(x*) = sup x*(C). A quantitative version of James's Compactness Theorem is proved using JaE and Ja, and in particular it yields the following result. Let C be a closed convex bounded subset of a Banach space E and r > 0. If there is an element$x_0^{**}$in$\overline{C}^{w^*}$whose distance to C is greater than r, then there is x* ∈ E* such that each x**$\overline{C}^{w^*}$at which sup x*(C) is attained has distance to E greater than ½r. We indeed establish that JaE and Ja are equivalent to other measures of weak non-compactness studied in the literature. We also collect particular cases and examples showing when the inequalities between the different measures of weak non-compactness can be equalities and when the inequalities are sharp.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantification of Banach-Saks properties of higher orders;Journal of Mathematical Analysis and Applications;2023-01

2. Quantifying properties ( K ) and (μs$\mu ^{s}$);Mathematische Nachrichten;2022-12-04

3. $$(1+)$$-complemented, $$(1+)$$-isomorphic copies of $$L_{1}$$ in dual Banach spaces;Archiv der Mathematik;2022-08-26

4. Quantifications of boundedly complete and shrinking bases;Illinois Journal of Mathematics;2022-01-01

5. A quantitative version of the Kolmogorov–Riesz theorem;Advances in Operator Theory;2020-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3