Abstract
AbstractIn this article we examine the natural interpretation of a ramified type hierarchy into Martin-Löf type theory with an infinite sequence of universes. It is shown that under this predicative interpretation some useful special cases of Russell’s reducibility axiom are valid, namely functional reducibility. This is sufficient to make the type hierarchy usable for development of constructive mathematical analysis in the style of Bishop. We present a ramified type theory suitable for this purpose. One may regard the results of this article as an alternative solution to the problem of the proliferation of levels of real numbers in Russell’s theory, which avoids impredicativity, but instead imposes constructive logic. The intuitionistic ramified type theory introduced here also suggests that there is a natural associated notion of predicative elementary topos.
Publisher
Cambridge University Press (CUP)
Reference12 articles.
1. Mathematical Logic as Based on the Theory of Types
2. The Foundations of Mathematics
3. [5] Kamareddine F. , Laan T. , and Nederpelt R. , Types in logic and mathematics before 1940, this Bulletin, vol. 8 (2002), pp. 185–245.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献