A novel laser shock post-processing technique on the laser-induced damage resistance of 1ω HfO2/SiO2 multilayer coatings

Author:

Pu Tangyang,Liu Wenwen,Wang Yueliang,Pan Xiaoming,Chen Leiqing,Liu Xiaofeng

Abstract

Abstract The laser shock processing implemented by a laser-induced high-pressure plasma which propagates into the sample as a shockwave is innovatively applied as a post-processing technique on HfO2/SiO2 multilayer coatings for the first time. The pure mechanical post-processing has provided evidence of a considerable promotion effect of the laser-induced damage threshold, which increased by a factor of about 4.6 with appropriate processing parameters. The promotion mechanism is confirmed to be the comprehensive modification of the intrinsic defects and the mechanical properties, which made the applicability of this novel post-processing technique on various types of coatings possible. Based on experiments, an interaction equation for the plasma pressure is established, which clarifies the existence of the critical pressure and provides a theoretical basis for selecting optimal processing parameters. In addition to the further clarification of the underlying damage mechanism, the laser shock post-processing provides a promising technique to realize the comprehensive and effective improvement of the laser-induced damage resistance of coatings.

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3