Abstract
AbstractThe Kelvin impulse is a particularly valuable dynamical concept in unsteady fluid mechanics, with Benjamin and Ellis [2] appearing to be the first to have realised its value in cavitation bubble dynamics. The Kelvin impulse corresponds to the apparent inertia of the cavitation bubble and, like the linear momentum of a projectile, may be used to determine aspect It is defined aswhere ρ is the fluid density, ø is the velocity potential, S is the surface of the cavitation bubble and n is the outward normal to the fluid. Contributions to the Kelvin impulse may come from the presence of nearby boundaries and the ambient velocity and pressure field. With this number of mechanisms contributing to its development, the Kelvin impulse may change sign during the lifetime of the bubble. After collapse of the bubble, it needs to be conserved, usually in the form of a ring vortex. The Kelvin impulse is likely to provide valuable indicators as to the physical properties required of boundaries in order to reduce or eliminate cavitation damage. Comparisons are made against available experimental evidence.
Publisher
Cambridge University Press (CUP)
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献