Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. II. Radiation interception and conversion

Author:

OLESEN J. E.,JØRGENSEN L. N.,MORTENSEN J. V.

Abstract

Data from a three factor experiment carried out during two years were used to analyse the effects of drought, nitrogen and disease on light interception (IPAR) and radiation use efficiency (RUE) in winter wheat (Triticum aestivum L.). The factors in the experiment comprised four irrigation strategies including no irrigation, three nitrogen levels providing 67, 83 and 100% of the recommended nitrogen rate, and two strategies for control of leaf diseases (with and without fungicides). Light interception was estimated from weekly measurements of crop spectral reflectance. This method was compared with estimates derived from crop area index measured by plant samples or by using the LAI2000 instrument. There was a good correspondence between the different methods before anthesis, but an overestimation of light interception with the methods using crop area index after anthesis due to an increase in non-photosynthetic active leaf area. Irrigation increased both IPAR and RUE. The relative increase in IPAR for irrigation was greater than the relative increase in RUE in the first year, whereas they were of similar size in the second year. The differences between the years could be attributed to changes in timing of the drought relative to crop ontogenesis. Increasing nitrogen rate increased IPAR, but caused a small decrease in RUE in both years. This reduction in RUE with increasing nitrogen concentration in leaves was also found to be significant when disease levels and drought effects were included in a multiple linear regression. Fungicide application increased IPAR in both years, but RUE was only significantly reduced by disease in the first year, where mildew dominated the trial. The data were also used to estimate the coefficients of partitioning of dry matter to grains before and after anthesis. About 40% of dry matter produced before anthesis and about 60% after anthesis was estimated to contribute to grain yield. The low fraction after anthesis is probably due to the fact that it was not possible to estimate changes in RUE with time, which may lead to biases in the estimation of partitioning coefficients.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3