In situ XRPD study of the ambient-pressure synthesis of nonstoichiometric Ag3O from Ag–Ag2O thin films: Phase abundance, unit-cell parameters, and c/a as a function of temperature and time

Author:

Schields Paul J.ORCID,Dunwoody Nicholas,Field David,Wilson Zachary

Abstract

Ag3O was synthesized by jet-milling magnetron-sputtered Ag–Ag2O thin films. Heating the jet-milled powders in air and N2 from 40 to 148 °C at ambient pressure produced Ag3O-rich powders. The phase composition and unit-cell parameters of the jet-milled powders were measured as a function of temperature with in situ X-ray powder diffraction experiments from −186 to 293 °C. Ag3O was also produced by ball milling and sonicating jet-milled films at ambient conditions. The phase composition, unit-cell parameters, and thermal-reaction rates indicate nonstoichiometric Ag3O was produced from the reaction of metastable, nonstoichiometric Ag2O (cuprite structure) and ccp Ag. The thermal expansion of Ag3O is anisotropic; below 25 °C, the a-axis expansion is about twice the c-axis expansion resulting in a negative slope of c/a(T). The reversal of the sign of c/a(T) near 25 °C is dramatic. The thermal reaction is arrested when the temperature is rapidly increased from ambient to 130 °C. Ag3O is metastable and decreases its unit-cell volume during kinetic decomposition to Ag when heated above ambient temperature in air and nitrogen. The relative volume expansion of Ag3O is about 80% less than Ag at room temperature and below. The suite of nonstoichiometric Ag3O produced by heating displays a linear relation between c/a and unit-cell volume at room temperature. The c/a and unit-cell volume of a hydrothermally grown Ag3O single crystal reported in a published structure determination was the Ag-rich, low-volume end member of the linear series. The c/a and unit-cell volume are sensitive indicators of the oxygen content and state of disorder.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3