Author:
Flesch János,Vermeulen Dries,Zseleva Anna
Abstract
AbstractWe consider decision problems with arbitrary action spaces, deterministic transitions, and infinite time horizon. In the usual setup when probability measures are countably additive, a general version of Kuhn’s theorem implies under fairly general conditions that for every mixed strategy of the decision maker there exists an equivalent behavior strategy. We examine to what extent this remains valid when probability measures are only assumed to be finitely additive. Under the classical approach of Dubins and Savage (2014), we prove the following statements: (1) If the action space is finite, every mixed strategy has an equivalent behavior strategy. (2) Even if the action space is infinite, at least one optimal mixed strategy has an equivalent behavior strategy. The approach by Dubins and Savage turns out to be essentially maximal: these two statements are no longer valid if we take any extension of their approach that considers all singleton plays.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献