Abstract
AbstractStein’s method is used to study discrete representations of multidimensional distributions that arise as approximations of states of quantum harmonic oscillators. These representations model how quantum effects result from the interaction of finitely many classical ‘worlds’, with the role of sample size played by the number of worlds. Each approximation arises as the ground state of a Hamiltonian involving a particular interworld potential function. Our approach, framed in terms of spherical coordinates, provides the rate of convergence of the discrete approximation to the ground state in terms of Wasserstein distance. Applying a novel Stein’s method technique to the radial component of the ground state solution, the fastest rate of convergence to the ground state is found to occur in three dimensions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Higher energy state approximations in the “Many interacting worlds” model;Infinite Dimensional Analysis, Quantum Probability and Related Topics;2024-06-27