Time-convergent random matrices from mean-field pinned interacting eigenvalues

Author:

Mengütürk Levent AliORCID

Abstract

AbstractWe study a multivariate system over a finite lifespan represented by a Hermitian-valued random matrix process whose eigenvalues (i) interact in a mean-field way and (ii) converge to their weighted ensemble average at their terminal time. We prove that such a system is guaranteed to converge in time to the identity matrix that is scaled by a Gaussian random variable whose variance is inversely proportional to the dimension of the matrix. As the size of the system grows asymptotically, the eigenvalues tend to mutually independent diffusions that converge to zero at their terminal time, a Brownian bridge being the archetypal example. Unlike commonly studied random matrices that have non-colliding eigenvalues, the proposed eigenvalues of the given system here may collide. We provide the dynamics of the eigenvalue gap matrix, which is a random skew-symmetric matrix that converges in time to the $\textbf{0}$ matrix. Our framework can be applied in producing mean-field interacting counterparts of stochastic quantum reduction models for which the convergence points are determined with respect to the average state of the entire composite system.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3