On moments of downward passage times for spectrally negative Lévy processes

Author:

Behme AnitaORCID,Strietzel Philipp LukasORCID

Abstract

AbstractThe existence of moments of first downward passage times of a spectrally negative Lévy process is governed by the general dynamics of the Lévy process, i.e. whether it is drifting to $+\infty$ , $-\infty$ , or oscillating. Whenever the Lévy process drifts to $+\infty$ , we prove that the $\kappa$ th moment of the first passage time (conditioned to be finite) exists if and only if the $(\kappa+1)$ th moment of the Lévy jump measure exists. This generalizes a result shown earlier by Delbaen for Cramér–Lundberg risk processes. Whenever the Lévy process drifts to $-\infty$ , we prove that all moments of the first passage time exist, while for an oscillating Lévy process we derive conditions for non-existence of the moments, and in particular we show that no integer moments exist.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Moments of the Ruin Time in a Lévy Risk Model;Methodology and Computing in Applied Probability;2022-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3