Given-data probabilistic fatigue assessment for offshore wind turbines using Bayesian quadrature

Author:

Fekhari EliasORCID,Chabridon VincentORCID,Muré Joseph,Iooss Bertrand

Abstract

Abstract Offshore wind turbines intend to take a rapidly growing share in the electric mix. The design, installation, and exploitation of these industrial assets are regulated by international standards, providing generic guidelines. Constantly, new projects reach unexploited wind resources, pushing back installation limits. Therefore, turbines are increasingly subject to uncertain environmental conditions, making long-term investment decisions riskier (at the design or end-of-life stage). Fortunately, numerical models of wind turbines enable to perform accurate multi-physics simulations of such systems when interacting with their environment. The challenge is then to propagate the input environmental uncertainties through these models and to analyze the distribution of output variables of interest. Since each call of such a numerical model can be costly, the estimation of statistical output quantities of interest (e.g., the mean value, the variance) has to be done with a restricted number of simulations. To do so, the present paper uses the kernel herding method as a sampling technique to perform Bayesian quadrature and estimate the fatigue damage. It is known from the literature that this method guarantees fast and accurate convergence together with providing relevant properties regarding subsampling and parallelization. Here, one numerically strengthens this fact by applying it to a real use case of an offshore wind turbine operating in Teesside, UK. Numerical comparison with crude and quasi-Monte Carlo sampling demonstrates the benefits one can expect from such a method. Finally, a new Python package has been developed and documented to provide quick open access to this uncertainty propagation method.

Publisher

Cambridge University Press (CUP)

Reference75 articles.

1. Environmental lumping for efficient fatigue assessment of large-diameter monopile wind turbines;Katsikogiannis;Marine Structures,2021

2. Oates, CJ (2021) Minimum Discrepancy Methods in Uncertainty Quantification. Lecture Notes at École Thématique sur les Incertitudes en Calcul Scientifique (ETICS21). Available at https://www.gdr-mascotnum.fr/etics.html.

3. Van den Bos, L (2020) Quadrature Methods for Wind Turbine Load Calculations. PhD thesis, Delft University of Technology.

4. A comprehensive code-to-code comparison study with the modified IEA15MW-UMaine floating wind turbine for H2020 HIPERWIND project;Kim;Journal of Physics: Conference Series,2022

5. Support points;Mak;Annals of Statistics,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3