Abstract
AbstractA natural generalization of interval exchange maps are linear involutions, first introduced by Danthony and Nogueira [Measured foliations on non-orientable surfaces.Ann. Sci. Éc. Norm. Supér.(4)26(6) (1993), 645–664]. Recurrent train tracks with a single switch provide a subclass of linear involutions. We call such linear involutions non-classical interval exchanges. They are related to measured foliations on orientable flat surfaces. Non-classical interval exchanges can be studied as a dynamical system by considering Rauzy induction in this context. This gives a refinement process on the parameter space similar to Kerckhoff’s simplicial systems. We show that the refinement process gives an expansion that has a key dynamical property calleduniform distortion. We use uniform distortion to prove normality of the expansion. Consequently, we prove an analog of Keane’s conjecture: almost every non-classical interval exchange is uniquely ergodic. Uniform distortion has been independently shown in [A. Avila and M. Resende. Exponential mixing for the Teichmüller flow in the space of quadratic differentials, http://arxiv.org/abs/0908.1102].
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Reference19 articles.
1. [1] Avila A. and Resende M. . Exponential mixing for the Teichmüller flow in the space of quadratic differentials. Comment. Math. Helv. to appear. See http://w3.impa.br/∼avila/papers.html.
2. [13] Mosher L. . Train track expansions of measured foliations. Preprint.
3. A random tunnel number one 3–manifold does not fiber over the circle
4. [7] Gadre V. . The limit set of the handlebody set has measure zero. Appendix to Are large distance Heegaard splittings generic? by M. Lustig and Y. Moriah, J. Reine Angew. Math. to appear.
5. Connected components of the moduli spaces of Abelian differentials with prescribed singularities
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献