Abstract
AbstractWe study Poincaré recurrence for flows and observations of flows. For Anosov flow, we prove that the recurrence rates are linked to the local dimension of the invariant measure. More generally, we give for the recurrence rates for the observations an upper bound depending on the push-forward measure. When the flow is metrically isomorphic to a suspension flow for which the dynamic on the base is rapidly mixing, we prove the existence of a lower bound for the recurrence rates for the observations. We apply these results to the geodesic flow and we compute the recurrence rates for a particular observation of the geodesic flow, i.e. the projection on the manifold.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献