Author:
Denker Manfred,Philipp Walter
Abstract
AbstractLet denote a flow built under a Hölder-continuous function l over the base (Σ, μ) where Σ is a topological Markov chain and μ some (ψ-mining) Gibbs measure. For a certain class of functions f with finite 2 + δ-moments it is shown that there exists a Brownian motion B(t) with respect to μ and σ2 > 0 such that μ-a.e.for some 0 < λ < 5δ/588. One can also approximate in the same way by a Brownian motion B*(t) with respect to the probability . From this, the central limit theorem, the weak invariance principle, the law of the iterated logarithm and related probabilistic results follow immediately. In particular, the result of Ratner ([6]) is extended.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献