Abstract
A homeomorphism on a metric space (X,d) is completely scrambled if for each x\not= y\in X, \lim sup_{n\longrightarrow +\infty} d(f^n(x),f^n(y))>0 and \lim inf_{n\ longrightarrow +\infty}d(f^n(x),f^n(y))=0. We study the basic properties of completely scrambled homeomorphisms on compacta and show that there are ‘many’ compacta admitting completely scrambled homeomorphisms, which include some countable compacta (we give a characterization), the Cantor set and continua of arbitrary dimension.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献