Author:
Badr Basem M.,Somogyi-Csizmazia Robert,Leslie Paul,Delaney Kerry R.,Dechev Nikolai
Abstract
The performance of wireless power transfer (WPT) systems is a function of many parameters such as resonance matching, coil quality factor, system impedance match, and others. When designing and testing WPT systems, reliable measurement of system performance is essential. In our application, we use WPT to power biomedical implants for telemetry acquisition from small rodents, where rodent behavior data is used to study disease models. Such an application employs a large primary coil and a much smaller moving secondary coil, which can be defined as a loosely coupled WPT (LCWPT) system. This paper presents a novel wireless measurement system (WMS) that is used to collect real-time performance data from the secondary circuit (implant), while testing LCWPT systems. Presently, measuring the performance of the secondary side of LCWPT systems while they are in operation can be problematic. The literature reports various measurement errors when using voltage/current probes, or coaxial cables placed directly into the primary magnetic field. We have designed the WMS to greatly reduce such measurement errors, where the WMS measures the induced voltage (and hence received power) and relays this information by radio. Experiments were done to test the WMS, as well as comparison with cable-based measurements.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Energy Engineering and Power Technology
Reference36 articles.
1. RF antenna “FR05-S1-N-0–110” (2015, July 16). [Online]. Available: http://www.fractus.com/sales_documents/FR05-S1-N-0-110/UM_FR05_S1_N_0_110.pdf.
2. Gate driver “MIC4421” (May 16, 2015). [Online]. Available: http://www.micrel.com.
3. Performance improvement of rectifiers for WPT exploiting thermal energy harvesting
4. Optimal Transmission Frequency for Ultralow-Power Short-Range Radio Links
5. Magnetic coupling coefficient determination of IPT systems under operating conditions
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献