Maximizing the efficiency of wireless power transfer with a receiver-side switching voltage regulator

Author:

Narusue Yoshiaki,Kawahara Yoshihiro,Asami Tohru

Abstract

Output voltage regulation is an essential technology for achieving stable wireless power supply. A receiver-side switching voltage regulator is useful for realizing output voltage regulation. However, this paper shows that the switching voltage regulator degrades the transfer efficiency to below 50% in a wireless power transfer system that consists of a class-D power inverter and series-resonant transmitting and receiving resonators. Such efficiency degradation is caused by the instability of an operating point where the efficiency is >50%. The input resistance value of the switching voltage regulator at a stable operating point is much higher than the optimum value for maximizing the efficiency. To stabilize the high-efficiency operating points, this paper formulates a stability condition and derives its sufficient condition. The sufficient condition facilitates a system design method using a K-impedance inverter that allows for the optimum input resistance value to lie in the range of allowable input resistance values. In addition, we introduce an input-voltage-based efficiency maximization method for the system with the receiver-side switching voltage regulator. By combining these two methods, efficiency maximization is realized with the receiver-side switching voltage regulator. The proposed methods were verified by both simulations and measurements.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Energy Engineering and Power Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3