TEM analysis as a tool for toxicological assessment of occupational exposure to airborne nanoparticles from welding

Author:

Gomes J.,Guerreiro C.,Lavrador D.,Carvalho P.A.,Miranda R.M.

Abstract

Welding is the principal industrial process used for joining metals. However, it can produce dangerous fumes that may be hazardous to the welder’s health and it is estimated that, presently, 1-2% of workers from different professional backgrounds (which accounts for more than 3 million persons) are subjected to welding fume and gas action. With the advent of new types of welding procedures and consumables, the number of welders exposed to welding fumes is growing constantly in spite of the mechanization and automation of the processes. Simultaneously, the number of publications on epidemiologic studies and the devices for welders’ protection is also increasing. Apart from that, the influence of very ultrafine particulate, lying in the nanoparticles range, on human health has been pointed to be of much concern as airborne nanoparticles are resulting both from nanotechnologies processes and also from macroscopic common industrial processes such as welding. In fact, nanotoxicological research is still in its infancy and the issuing and implementation of standards for appropriate safety control systems can still take several years. Yet, the advanced understanding of toxicological phenomena on the nanometre scale is largely dependent on technological innovations and scientific results stemming from enhanced R&D. Meanwhile, the industry has to adopt proactive risk management strategies in order to provide a safe working environment for their staff, clients and customers, and obtain products without posing health threats at any point of their lifecycle. Understanding the relationship of airborne nano sized particulate and human health, under different environmental conditions is of great importance for improving exposure estimates and for developing efficient control strategies to reduce human exposure and health risk and for establishing, evaluating and improving regulations and legislation both on air quality, airborne emissions and the incorporation of nano sized materials in other products and commodities.Mass measurement methods are not sufficiently sensitive for airborne nanoparticles and are not sensitive toward the specific health relevant properties of nanoparticles. The most sensitive concentration measured in this particle range (> 100 nm diameter) is the number concentration. In fact, surface area is a relevant metric for nanoparticles, as most of the processes in the human body environment take place via the particle surface, which is increasing significantly with decreasing particle size in the nanometer size range for the same amount of mass. In order to perform the toxicological assessment of welding processes a Nanoparticle Surface Area Monitor, TSI, Model 3550, based on diffusion charging (measuring the electrostatic charge on a sampled aerosol, mainly composed of nanoparticles) was used for monitoring the emission of nanoparticles resulting from several welding processes. This equipment indicates the human lung-deposited surface area of particles expressed as square micrometers per cubic centimeter of air (µm2/cm3). Although this instrument is very precise and its use has been validated for this purpose, the definite presence of nanoparticles in welding fume has to be complemented by microscopy techniques such as transmission electron microscopy (TEM), which has proved very helpful in order to establish the size, shape and aggregation habit of sampled aerosols, as well as energy dispersive X-ray spectroscopy (EDS) for performing the chemical analysis of collected nanoparticles. Figure 1 shows the aspect of aggregates of particles, in the nano size range, collected from welding fume during shielded metal arc welding (SMAW) of carbon steel and friction stir welding (FSW) of aluminium alloys, respectively. As expected in arc welding aggregates of larger dimensions are produced in more roundish shaped particles while in FSW these are finer. Chemical analysis determined by EDS showed that the emitted nanoparticles of SMAW are mostly resulting from burning of electrode coating and less from its core. Therefore, in order to reduce particulate emissions, special care has to be paid to the chemical composition of the electrodes coating.The work was supported by the Portuguese Science Foundation through PEst-OE/EQB/LA0023/2011, PEst-OE/EME/UI0667/2011 and PEst-OE/CTM-UI0084/2011 and grants.

Publisher

Cambridge University Press (CUP)

Subject

Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3