Abstract
Abstract
We demonstrate an efficient ultrafast source with 195 fs pulse duration, 54 W average power at 200 kHz repetition rate and near diffraction-limited beam quality. The compact setup incorporates a thin-disk Yb:YAG regenerative amplifier (RA) and a subsequent nonlinear pulse compression stage with periodic-layered Kerr media (PLKM), which is one of the multiple-thin-solid-plate schemes based on nonlinear resonator theory. In virtue of the formation of quasi-stationary spatial soliton in PLKM, the near diffraction-limited beam quality of the RA remained almost undisturbed after post-compression. The nonlinear pulse compression module is simple and efficient with a transmission of 96%. To the best our knowledge, for pulse energy over 200 μJ, this is the highest output power reported for the multiple-thin-solid-plate scheme. This source manifests an economical combination to mitigate the bandwidth limitations of Yb-based high-power chirped pulse amplifiers.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献