Transport of inertial spherical particles in compressible turbulent boundary layers

Author:

Yu MingORCID,Zhao LihaoORCID,Yuan XianxuORCID,Xu ChunxiaoORCID

Abstract

In the present study, we perform direct numerical simulations of compressible turbulent boundary layers at free stream Mach numbers $2\unicode{x2013}6$ laden with dilute phase of spherical particles to investigate the Mach number effects on particle transport and dynamics. Most of the phenomena observed and well-recognized for inertia particles in incompressible wall-bounded turbulent flows – such as near-wall preferential accumulation and clustering beneath low-speed streaks, flatter mean velocity profiles, and trend variation of the particle velocity fluctuations – are identified in the compressible turbulent boundary layer as well. However, we find that the compressibility effects are significant for large inertia particles. As the Mach number increases, the near-wall accumulation and the small-scale clustering are alleviated, which is probably caused by the variations of the fluid density and viscosity that are crucial to particle dynamics. This can be affected by the fact that the forces acting on the particles with viscous Stokes number greater than 500 are modulated by the comparatively high particle Mach numbers in the near-wall region. This is also the reason for the abatement of the streamwise particle velocity fluctuation intensities with the Mach numbers.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3