Enhancing transport barriers with swimming micro-organisms in chaotic flows

Author:

Ran RanjiangshangORCID,Arratia Paulo E.ORCID

Abstract

We investigate the effects of bacterial activity on the mixing and transport properties of a passive scalar in time-periodic flows in experiments and in a simple model. We focus on the interactions between swimming Escherichia coli and the Lagrangian coherent structures (LCSs) of the flow, which are computed from experimentally measured velocity fields. Experiments show that such interactions are non-trivial and can lead to transport barriers through which the scalar flux is significantly reduced. Using the Poincaré map, we show that these transport barriers coincide with the outermost members of elliptic LCSs known as Lagrangian vortex boundaries. Numerical simulations further show that elliptic LCSs can repel elongated swimmers and lead to swimmer depletion within Lagrangian coherent vortices. A simple mechanism shows that such depletion is due to the preferential alignment of elongated swimmers with the tangents of elliptic LCSs. Our results provide insights into understanding the transport of micro-organisms in complex flows with dynamical topological features from a Lagrangian viewpoint.

Funder

Division of Materials Research

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bacterial barriers;Journal of Fluid Mechanics;2024-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3