Abstract
Motivated by buoyancy-driven flows within geological formations, we study the evolution of a (dense) gravity current in a porous medium bisected by a thin interbed layer. The gravity current experiences distributed drainage along this low-permeability boundary. Our theoretical description of this flow takes into account dispersive mass exchange with the surrounding ambient fluid by considering the evolution of the bulk and dispersed phases of the gravity current. In turn, we model basal draining by considering two bookend limits, i.e. no mixing versus perfect mixing in the lower layer. Our formulations are assessed by comparing model predictions against the output of complementary numerical simulations run using COMSOL. Numerical output is essential both for determining the value of the entrainment coefficient used within our theory and for assessing the reasonableness of key modelling assumptions. Our results suggest that the degree of dispersion depends on the dip angle and the depth and permeability of the interbed layer. We further find that the nose position predictions made by our theoretical models are reasonably accurate up to the point where the no mixing model predicts a retraction of the gravity current front. Thereafter, the no mixing model significantly under-predicts, and the perfect mixing model moderately over-predicts, numerical data. Reasons for the failure of the no mixing model are provided, highlighting the importance of convective instabilities in the lower layer. A regime diagram is presented that defines the parametric region where our theoretical models do versus do not yield predictions in good agreement with numerical simulations.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献