Bi-global stability of supersonic backward-facing step flow

Author:

Yu KaikaiORCID,Hao JiaaoORCID,Wen Chih-YungORCID,Xu Jinglei

Abstract

Supersonic backward-facing step (BFS) flow is numerically studied using direct numerical simulation (DNS) and global stability analysis (GSA) with a free stream Mach number of 2.16 and a Reynolds number of 7.938 × 105 based on the flat-plate length L and free stream conditions. Two-dimensional BFS flow becomes unstable to three-dimensional perturbations as the step height h exceeds a certain value, while no two-dimensionally unstable mode is found. Global instability occurs with the fragmentation of the primary separation vortex downstream of the step. Two stationary modes and one oscillatory unstable mode are obtained at a supercritical ratio of L/h = 32.14, among which the two stationary modes originate from the coalescence of a pair of conjugate modes. The most unstable mode manifests itself as streamwise streaks in the reattached boundary layer, which is similar to that in shock-induced separated flow, although the flow separation mechanisms are different. Without introducing any external disturbances, the DNS captures the preferred perturbations and produces a growth rate in agreement with the GSA prediction in the linear growth stage. In the quasi-steady stage, the secondary separation vortex breaks up into several small bubbles, and the number of streamwise streaks is doubled. A low-frequency unsteadiness that may be associated with the oscillatory mode is also present.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3