Excitation and evolution of radiating modes in supersonic boundary layers. Part 2. Back effect of spontaneously radiated Mach waves

Author:

Qin FufengORCID,Wu XuesongORCID

Abstract

This paper investigates the linear and nonlinear evolution of radiating modes under the influence of the spontaneously emitted Mach waves in a simple set-up of the supersonic boundary layers that develop in the entry region of a channel formed by two parallel semi-infinite flat plates. Two scenarios are considered. The first occurs in the boundary layers having identical wall conditions, where the Mach wave emitted by a radiating mode in one boundary layer influences the instability in the other. The second scenario takes place when the wall temperatures are different, in which case the spontaneously radiated Mach wave is reflected by the other boundary layer back to act on the radiating mode. Appropriate amplitude equations with the acoustic feedback effect being accounted for are derived. In each case, the effect of the spontaneously emitted sound contributes a linear term of delay type to the respective amplitude equation. For the first scenario, analytical and numerical studies of the amplitude equations show that due to the back action of the spontaneously radiated Mach wave, the amplitude exhibits rapid oscillations, and in the case of enhanced feedback effects, its envelope experiences near extinction followed by resurrection. The study of the coupled equations shows that the two modes with different initial amplitudes either undergo oscillations before attenuating, or terminate a finite-distance singularity at different locations. For the second scenario, the acoustic feedback produces similar effects in a broad range of wall temperature. The effects become pronounced, and the dependence on the wall temperature becomes more sensitive when the latter approaches the value corresponding to the resonance. Estimates suggest that such acoustic feedback is likely to be present in typical wind tunnel experiments and models for scramjet combustors.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3