Combined Theodorsen and Sears theory: experimental validation and modification

Author:

Feng Li-HaoORCID,Wang Tong

Abstract

The response of airfoils to unsteady disturbances is a classic problem in the aerodynamics field. Many theoretical models have been proposed in the past to predict the unsteady aerodynamic forces of airfoils. However, these theories focused on individual airfoil motions or incoming flow disturbances, while the theoretical models for multiple disturbances still need to be developed. In this study, a theoretical model to predict the aerodynamic force of an oscillating airfoil encountering vertical gust is derived from a linear combination of Theodorsen's and Sears’ theories. Experimental investigations involving a two-dimensional pitching airfoil encountering a sinusoidal vertical gust are carried out to examine the proposed theory. It is found that the theory effectively captures the trends in the unsteady lift of airfoils subjected to dual disturbances. However, it tends to overestimate the lift amplitude. Notably, when a quasi-steady correction is applied to the theory, the prediction accuracy is greatly improved. The theory correction agrees well with experiment at small pitching frequencies, while deviations exist at higher pitching frequencies. The temporal evolution of the flow velocity reveals that the velocity disturbance induced by the coupled disturbance around the airfoil conforms to the linear superposition of the velocities induced by each individual disturbance, consistent with the prediction of the vortex sheet model. As the pitching frequency increases, significant nonlinear effects appear near the trailing edge of the airfoil, which may be one key factor for the disparities between the theoretical predictions and the experimental lift at higher pitching frequencies.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Reference37 articles.

1. Unsteady Aerodynamic Response of a Two-Dimensional Airfoil at High Reduced Frequency

2. Unsteady Lift and Moment of a Periodically Plunging Airfoil

3. Hakkinen, R.J. & Richardson, A.S. 1957 Theoretical and experimental investigation of random gust loads part I: aerodynamic transfer function of a simple wing configuration in incompressible flow. NACA Tech. Note 3878.

4. Dynamic stall development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3