High-level Green–Naghdi model for large-amplitude internal waves in deep water

Author:

Zhao BinbinORCID,Zhang Tianyu,Wang ZhanORCID,Hayatdavoodi MasoudORCID,Gou Ying,Ertekin R. CengizORCID,Duan Wenyang

Abstract

In this paper, a high-level Green–Naghdi (HLGN) model for large-amplitude internal waves in a two-layer fluid system, where the upper-fluid layer is of finite depth and the lower-fluid layer is of infinite depth, is developed under the rigid-lid free-surface approximation. The equations of the present HLGN model follow Euler's equations under the sole assumption that the horizontal and vertical velocity distributions along the vertical column are presented by known shape functions for each layer. The linear dispersion relations of the HLGN model for different levels are presented and compared with those obtained by other strongly nonlinear models for deep water, including the fully nonlinear models that include the dispersion effects $O(\mu )$ (where $\mu$ is the ratio of the upper-fluid layer depth to a typical wavelength) derived by Choi & Camassa (Phys. Rev. Lett., vol. 77, 1996, pp. 1759–1762) and $O(\mu ^2)$ derived by Debsarma et al. (J. Fluid Mech., vol. 654, 2010, pp. 281–303). It is shown that the HLGN model has a wider application range than other models. Solutions of travelling large-amplitude internal solitary waves in the absence and presence of background shear-current are then investigated by using the HLGN model. For the no-current cases, results obtained by the HLGN model show better agreement with Euler's solution on wave profile, velocity profile at the maximum interface displacement and wave speed compared with those obtained by other models. For the background shear-current cases, results obtained by the HLGN model also show good agreement with those obtained by solving the Dubreil-Jacotin–Long equation.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3