Operating principles of peristaltic pumping through a dense array of valves

Author:

Winn AaronORCID,Katifori EleniORCID

Abstract

Immersed nonlinear elements are prevalent in biological systems that require a preferential flow direction, such as the venous and the lymphatic system. We investigate here a certain class of models where the fluid is driven by peristaltic pumping and the nonlinear elements are ideal valves that completely suppress backflow. This highly nonlinear system produces discontinuous solutions that are difficult to study. We show that, as the density of valves increases, the pressure and flow are well approximated by a continuum of valves which can be analytically treated, and we demonstrate through numeric simulation that the approximation works well even for intermediate valve densities. We find that the induced flow is linear in the peristaltic amplitude for small peristaltic forces and, in the case of sinusoidal peristalsis, is independent of pumping direction. Despite the continuum approximation used, the physical valve density is accounted for by modifying the resistance of the fluid appropriately. The suppression of backflow causes a net benefit in adding valves when the valve density is low, but once the density is high enough, valves predominately suppress forward flow, suggesting there is an optimum number of valves per wavelength. The continuum model for peristaltic pumping through an array of valves presented in this work can eventually provide insights about the design and operating principles of complex flow networks with a broad class of nonlinear elements.

Funder

Division of Materials Research

Simons Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3