Abstract
A previously developed method for large-eddy simulations (LES), based on spectral eddy-viscosity models, is generalised to the physical space representation. The method estimates the subgrid-scale (SGS) energy transfer using a similarity-type model expression for the SGS tensor obtained using Gaussian filtering of velocity fields advanced in the simulations. Following steps for the spectral space representation, the SGS transfer in the physical space is used to obtain a spatially varying eddy viscosity at each time step in LES. The computed eddy viscosity is employed to model the SGS stress tensor in the familiar Boussinesq form for use in LES. The method is tested in LES of isotropic turbulence at high Reynolds numbers where the inertial range dynamics is expected and for lower Reynolds number decaying turbulence under conditions of the classical Comte-Bellot and Corrsin experiments. In both cases the agreement with reference data is very good and the SGS transfer computed for the proposed eddy-viscosity model is highly correlated with the transfer computed for the similarity-type stress tensor.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献