Two- and three-dimensional wake transitions of a rectangular cylinder and resultant hydrodynamic effects

Author:

Ju XiaoyingORCID,Jiang HongyiORCID

Abstract

Two-dimensional (2-D) and three-dimensional (3-D) direct numerical simulations are conducted for flow past rectangular cylinders with various cross-sectional aspect ratios. The primary focuses are the interactions between the 2-D wake transitions in the spanwise vortex street (with distance downstream) and the 3-D wake transitions in the streamwise vortices, and the influence of both 2-D and 3-D wake transitions on the hydrodynamic forces on the cylinder. The 2-D wake transitions generally move upstream with increasing Reynolds number and decreasing aspect ratio. The corresponding reasons are explained. The 2-D wake transitions emerging close to the cylinder may directly alter the hydrodynamic forces on the cylinder, e.g. the Strouhal number, time-averaged drag coefficient and root-mean-square lift coefficient. By using specifically designed numerical cases to decompose the effects of the two 2-D transitions, it is found that the first 2-D transition from the primary to the two-layered vortex street results in reductions in the hydrodynamic forces, while the second 2-D transition to the secondary vortex street results in increases in the forces. The reduction/increase in the hydrodynamic forces becomes more significant when the transition location moves closer to the cylinder. The physical mechanisms for the influence on the hydrodynamic forces are elucidated. The upstream movement of the 2-D wake transitions also induces complex interactions between the 2-D and 3-D wake transitions (which also depends on the type of the 3-D mode). Correspondingly, the 3-D hydrodynamic forces may be governed by both 2-D and 3-D wake transitions (and their mutual influence).

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3