Simulating the rheology of dense suspensions using pairwise formulation of contact, lubrication and Brownian forces

Author:

Li Xuan,Royer John R.ORCID,Ness ChristopherORCID

Abstract

Dense suspensions of solid particles in viscous liquid are ubiquitous in both industry and nature, and there is a clear need for efficient numerical routines to simulate their rheology and microstructure. Particles of micron size present a particular challenge: at low shear rates, colloidal interactions control their dynamics while at high rates, granular-like contacts dominate. While there are established particle-based simulation schemes for large-scale non-Brownian suspensions using only pairwise lubrication and contact forces, common schemes for colloidal suspensions generally are more computationally costly and thus restricted to relatively small system sizes. Here, we present a minimal particle-based numerical model for dense colloidal suspensions that incorporates Brownian forces in pairwise form alongside contact and lubrication forces. We show that this scheme reproduces key features of dense suspension rheology near the colloidal-to-granular transition, including both shear thinning due to entropic forces at low rates and shear thickening at high rates due to contact formation. This scheme is implemented in LAMMPS, a widely used open source code for parallelised particle-based simulations, with a runtime that scales linearly with the number of particles, making it amenable for large-scale simulations.

Funder

Royal Academy of Engineering

Leverhulme Trust

Publisher

Cambridge University Press (CUP)

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3